Matematika

Pertanyaan

Jika [tex] 6^{4 log_{x} }[/tex] [tex] 3^{-3 log_{x} }[/tex] = 48, maka [tex]\frac{lim}{p-\ \textgreater \ x} [/tex] [tex] \frac{2 p^{2} - 20 p } \sqrt{2p-6} - \sqrt{p+4} [/tex] = ...

1 Jawaban

  • Selesaikan bentuk pada implikasi:
    [tex]$\begin{align}6^{4\log x}\times3^{-3\log x}&=48 \\ (2\times3)^{4\log x}\times3^{-3\log x}&=48 \\ 2^{4\log x}\times3^{4\log x-3\log x}&=48 \\ 2^{4\log x}\times 3^{\log x}&=2^4\times 3 \\ (2^4\times3)^\log x&=(2^4\times3)^1 \\ \log x&=1 \\ x&=10^1=10\end{align}[/tex]

    Selesaikan dalam limit dengan menggunakan perkalian sekawan:
    [tex]$\begin{align}\lim_{p\to10}\frac{2p^2-20p}{\sqrt{2p-6}-\sqrt{p+4}}&=\lim_{p\to10}\frac{2p^2-20p}{\sqrt{2p-6}-\sqrt{p+4}}\times\frac{\sqrt{2p-6}+\sqrt{p+4}}{\sqrt{2p-6}+\sqrt{p+4}} \\ &=\lim_{p\to10}\frac{(2p^2-20p)(\sqrt{2p-6}+\sqrt{p+4})}{(2p-6)-(p+4)} \\ &=\lim_{p\to10}\frac{2p(p-10)(\sqrt{2p-6}+\sqrt{p+4})}{p-10}\\&=\lim_{p\to10}2p(\sqrt{2p-6}+\sqrt{p+4}) \\ &=20\times(\sqrt{14}+\sqrt{14}) \\ &=40\sqrt{14}\end{align}[/tex]

Pertanyaan Lainnya