Matematika

Pertanyaan

a. Jika x1 dan x2 akar-akar persamaan 4x + ax + a = 8 ,hitunglah minimum dari (x1 - x2 )²

B. Diberikan 2x + y = 20 dan R = x.y tentukanlah nilai R maksimum

1 Jawaban

  • nilai minimum

    4x² + ax  + a = 8
    4x² + ax + a - 8 = 0
    x1 + x2 = -a/4
    x1 x 2 = (a - 8)/4

    (x1 - x2)² = (x1 + x2)² - 4 x1x2
    (x1 - x2)²  =(-a/4)² - 4(a-8)/4
    (x1 - x2)² = a²/16 - (a - 8)
    misal (x1 - x2)²  = p
    p = 1/16 a² - a + 8
    p'(a)= 0
    1/8 a - 1 = 0
    1/8  a = 1
    a = 8
    p = 1/16 a² - a + 8
    p = 1/16(8²)  - 8 +8
    p = 1/16 (64)=  4
    nilai min (x1 - x2)²  = 4

    b.
    2x + y = 20
    y = 20 - 2x

    R = x.y
    R = x (20 - 2x)
    R(x)= 20 x - 2x²
    maksimum  R'(x) = 0
    20 - 4x = 0
    4x = 20
    x = 5
    sub ke  R(x)= 20 x - 2x²
    R(5) = 20(5) - 2(5²)
    R(5) = 100 - 50
    R(5) = 50

Pertanyaan Lainnya